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Prosaposin mediates inflammation in atherosclerosis
Mandy M. T. van Leent1,2, Thijs J. Beldman2,3, Yohana C. Toner1, Marnix A. Lameijer1,2, Nils Rother4, 
Siroon Bekkering3, Abraham J. P. Teunissen1, Xianxiao Zhou5, Roy van der Meel6, Joost Malkus1, 
Sheqouia A. Nauta1, Emma D. Klein1, Francois Fay1,7, Brenda L. Sanchez-Gaytan1,8, Carlos Pérez-Medina1,9, 
Ewelina Kluza6, Yu-Xiang Ye10,11, Gregory Wojtkiewicz10, Edward A. Fisher12, Filip K. Swirski10, 
Matthias Nahrendorf10, Bin Zhang5, Yang Li3,13, Bowen Zhang13, Leo A. B. Joosten3,14, 
Gerard Pasterkamp15, Arjan Boltjes15, Zahi A. Fayad1, Esther Lutgens2,16,17, Mihai G. Netea3,18, 
Niels P. Riksen3, Willem J. M. Mulder1,3,6,19, Raphaël Duivenvoorden1,4*

Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells 
are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key 
regulator. Using myeloid cell–specific nanobiologics in apolipoprotein E–deficient (Apoe−/−) mice, we found that 
targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macro-
phages’ inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding 
the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments re-
vealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of 
Psap−/− bone marrow to low-density lipoprotein receptor knockout (Ldlr−/−) mice led to a reduction in atherosclerosis 
development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and in-
flammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the develop-
ment of atherosclerosis and identify prosaposin as a potential therapeutic target.

INTRODUCTION
Atherosclerosis is a lipid-induced chronic inflammatory condition 
and the underlying cause of myocardial infarction and stroke. It is 
caused by the focal accumulation of lipoproteins in the arterial sub-
endothelial space. After oxidative modification, lipoproteins act as 
danger-associated molecular patterns triggering an inflammatory 
response with macrophages as the main protagonists (1).

The activation of macrophages by oxidized low-density lipo-
protein (oxLDL) and cholesterol crystals is an energy-demanding 
process and requires adjustment of their metabolism (2–4). Re-
cent studies revealed that metabolic reprogramming dictates the 
phenotype and inflammatory response of macrophage subsets in 
plaques and that the metabolic signature of macrophages is asso-
ciated with the risk of plaque rupture (3–5). Unraveling the regulation 
of plaque macrophage metabolism is therefore of fundamental 
importance and may uncover new targets for therapy.

In the present study, we investigated the mechanistic target of 
rapamycin (mTOR) signaling pathway in plaque macrophages. 
mTOR orchestrates cell metabolism and inflammatory activity in 
macrophages (6). However, mTOR’s role in regulating immuno
metabolism in atherosclerosis is poorly understood (6). Here, we 
investigated the role of mTOR signaling in atherosclerosis-prone 
apolipoprotein E–deficient (Apoe−/−) mice through inhibition of 
mTOR or its downstream target ribosomal protein S6 kinase-1 
(S6K1). To achieve specific inhibition, we intravenously adminis-
tered two different myeloid cell–specific nanobiologics that, 
respectively, target mTOR or S6K1. We observed a consistent re-
duction in plaque inflammation across multiple modalities and 
readouts. Subsequently, we unraveled the molecular mechanisms 
underlying this anti-inflammatory effect by transcriptome analy-
ses of myeloid cells isolated from plaques. Psap surfaced as a 
key-regulating gene. This gene encodes prosaposin, a highly con-
served lysosomal protein involved in glycosphingolipid metabo-
lism. As its role in atherosclerosis is unknown, we set out to study 
how prosaposin mediates inflammation in monocytes and mac-
rophages. We performed in vitro metabolic analyses and studies 
on plaque development using Psap knockout mice. In addition, 
we investigated the role of PSAP in human atherosclerosis by 
functional assays, histology, and single-cell transcriptome analysis 
of plaques.
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RESULTS
mTOR inhibitor and S6K1 inhibitor nanobiologic therapies 
reduce plaque inflammation
In addition to monocytes and macrophages, other cell types includ-
ing T cells, endothelial cells, and smooth muscle cells play pivotal 
roles in the pathogenesis of atherosclerosis (1). mTOR signaling is 
essential to cell metabolism (7), and systemic mTOR inhibition will 
affect all cell types involved in atherogenesis. We aimed to investi-
gate the effect of inhibiting the mTOR pathway specifically in 
monocytes and macrophages. To achieve this, we used apolipo-
protein A1 (APOA1)–based nanobiologics that facilitate drug delivery 
to myeloid cells with high targeting efficiency (8, 9). We used a 
nanobiologic containing the mTOR inhibitor rapamycin (mTORi-NB) 
and a newly developed nanobiologic containing the S6K1 inhibitor 
PF-4708671 (S6K1i-NB) (fig. S1A) (10). Ex vivo near-infrared fluores-
cence imaging performed 24 hours after intravenous administration 
in Apoe−/− mice showed that DiIC18(7) (DiR)–labeled nanobiologics 
primarily accumulated in the liver, spleen, and kidneys (fig. S1, B 
and C). High DiR uptake was observed in the aortic sinus area (fig. 
S1D), which is the preferential site of plaque development in this 
mouse model. Immune cell specificity was evaluated by flow cytom-
etry using mTORi-NB and S6K1i-NB labeled with the fluorophore 
DiOC18(3) (DiO). Similar to previous studies (8, 9), both nano-
biologics were predominantly taken up by aortic macrophages, 
Ly6Chi monocytes, neutrophils, and dendritic cells (fig. S1, E and 
F). Nonmyeloid cells (Lin+) took up a negligible amount of the nano-
biologics. In blood, spleen, and bone marrow, we identified a sim-
ilar myeloid cell–biased uptake pattern (fig. S1G).

We studied the effect of mTORi-NB and S6K1i-NB treatment on 
plaque inflammation in 20-week-old Apoe−/− mice that had been 
fed a Western diet (WD) for 12 weeks to develop atherosclerotic 
lesions. Whereas they remained on a WD, all mice were treated with 
four intravenous injections of phosphate-buffered saline (PBS), 
unloaded nanobiologics, mTORi-NB [containing rapamycin (5 mg/kg)], 
or S6K1i-NB [containing PF-4708671 (5 mg/kg)] over the course of 
1 week (Fig. 1A). We verified that mTORi-NB treatment did not 
affect serum cholesterol (fig. S1H). Mice treated with mTORi-NB 
had a 14% (P < 0.0001) and 9% (P = 0.006) smaller plaque size as 
compared with animals treated with PBS and unloaded NB, respec-
tively (Fig. 1, B to D). Plaque collagen content was not affected by 
mTORi-NB, whereas macrophage content was reduced by 33% 
(P = 0.013) and 34% (P = 0.004) as compared with both control 
groups (Fig. 1, E and F, and fig. S2A). S6K1i-NB treatment showed 
a similar effect on plaque inflammation with a 20% (P = 0.046) re-
duction in plaque macrophage content as compared with PBS-treated 
mice (Fig. 1, E and F), whereas no effect on plaque size and collagen 
content was observed (Fig. 1, B to D, and fig. S2A). These data indi-
cate that mTORi-NB and S6K1i-NB treatment ameliorated plaque 
vulnerability by reducing macrophage-rich areas without affecting 
collagen content (fig. S2B).

The histology results were corroborated by flow cytometry of 
whole aortas. After 1 week of treatment, mTORi-NB reduced the 
number of aortic CD11b+Lin− cells (monocytes and macrophages) 
by 56% (P = 0.0005) and 36% (P = 0.027), as compared with PBS 
and unloaded nanobiologics, respectively (Fig. 1G and fig. S2C). 
This effect was mainly driven by a reduction in plaque macro-
phages. Aortic CD11b+Lin− cells were also markedly decreased in 
the S6K1i-NB–treated mice by 76% (P < 0.0001) and 65% (P = 0.0005) 
in comparison to PBS and unloaded nanobiologic-treated groups 

(Fig. 1G and fig. S2C). In this treatment group, both macrophage 
and Ly6Chi monocyte numbers were reduced. Analysis of myeloid 
cell populations in the bone marrow, spleen, and peripheral blood 
indicated that the inhibition of plaque inflammation could not be 
explained by suppressed myelopoiesis, as neutrophils, Ly6Clo, and 
Ly6Chi monocytes were equal or increased in the nanobiologic-
treated mice (fig. S3, A to C).

To test the plaque’s inflammatory activity, we performed in vivo 
fluorescence molecular tomography with computed tomography 
(FMT-CT) imaging to quantify protease activity in the aortic sinus 
area. We used the same mouse model and treatment regimen as 
described above (Fig. 1A). PBS- and mTORi-NB–treated Apoe−/− 
mice received a single injection of an activatable pan-cathepsin pro-
tease sensor 24 hours before imaging. The protease sensor is taken 
up by activated macrophages and cleaved in the endolysosome (11), 
yielding fluorescence as a function of enzyme activity. mTORi-NB 
reduced protease activity by 30% compared with PBS control 
(P = 0.03; Fig. 1H).

Together, these data show that myeloid-specific inhibition of the 
mTOR signaling pathway rapidly reduces inflammatory activity in 
atherosclerotic lesions. This incentivized us to unravel the underly-
ing molecular mechanisms.

mTOR and S6K1 inhibition down-regulates Psap in  
plaque macrophages
To gain insight into the mechanism by which mTOR-S6K1 signal-
ing affects monocytes and macrophages in atherosclerosis, we used 
laser capture microdissection to isolate CD68+ cells from aortic 
sinus plaques of Apoe−/− mice that were treated for 1 week with 
either PBS, mTORi-NB, or S6K1i-NB. Total RNA of these cells was 
isolated for sequencing and whole transcriptome analysis.

First, we assessed whether the reduced plaque monocyte and 
macrophage burden could be explained by diminished monocyte 
recruitment or was potentially mediated by autophagy, because the 
latter can be induced by mTOR inhibition (12). Both mechanisms 
did not provide a satisfactory explanation. We found no inhibiting 
effect of our nanobiologic treatments on chemokine-related gene 
expression (tables S1 and S2). mTORi-NB treatment did not affect 
autophagy-related gene expression (table S3). In the S6K1i-NB–
treated group, five autophagy-related genes were differentially 
expressed, of which two were up-regulated and three were down-
regulated (table S4). The current data do not allow for definitive 
conclusions regarding the effects of our nanobiologics on autopha-
gy. Autophagy plays a crucial role in atherosclerosis, and potential 
effects of our nanobiologics on this process require further investi-
gation in future studies.

Subsequently, we adopted a systems biology approach of weighted 
gene coexpression network analysis in which a coexpression net-
work is constructed on the basis of expression correlation between 
genes. We used topological overlap matrix plots to show correla-
tions among all genes, in which increased color intensity indicates 
strong correlation coefficients between genes. To identify modules 
with groups of strongly coexpressed genes, we used linkage hierar-
chical clustering to group genes based on their topological overlap 
with other genes. We then ranked the modules by the significance 
of enrichment with the differentially expressed genes (DEGs) be-
tween treatments and controls. For both the mTORi-NB– and 
S6K1i-NB–treated mice, the turquoise modules were of highest in-
terest, as DEGs were most significantly enriched in these modules. 
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Fig. 1. Myeloid-specific mTOR inhibition reduces atherosclerotic plaque inflammation. Apoe−/− mice were fed a WD for 12 weeks, followed by 1 week of treatment, 
while continuing the diet. Treatment consisted of four intravenous injections of PBS, mTORi-NB [rapamycin (5 mg/kg)], S6K1i-NB [PF-4708671 (5 mg/kg)], or unloaded 
nanobiologics (NB; at a comparable dose) [see schematic in (A)]. (B) Representative images of H&E-stained aortic roots. Scale bars, 250 m. (C) Histologic quantification of 
plaque area at set distances from the aortic root, presented as mean ± SEM (n = 6 to 10 mice per group). (D) Lesion volume was calculated as area under the curve in (C). 
(E) Representative Mac3-stained aortic roots (scale bars, 250 m) and (F) quantification of Mac3+ area of treated mice (n = 6 to 10 mice per group). (G) Representative flow 
cytometry plots and quantification of CD11b+Lin− cells, macrophages (CD11b+Lin−CD11c−F4/80+Ly6Clo), and Ly6Chi monocytes (CD11b+Lin−CD11c−F4/80−Ly6Chi) in the 
aorta (n = 8 to 10 mice per group). (H) FMT-CT imaging of protease activity in the aortic root of PBS- or mTORi-NB–treated mice (n = 8 to 10 mice per group). Experiments 
were performed once. Data are presented as means ± SD unless otherwise stated. ANOVA with Dunnett’s correction was used in (D), and nonparametric Mann-Whitney 
U tests were applied in (F) to (H). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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The mTORi-NB turquoise module contained 1052 genes, which was 
significantly enriched with 46% of the DEGs (fold enrichment = 5.90, 
adjusted P = 9.75 × 10−20; Fig. 2, A and B). The S6K1i-NB turquoise 

module consisted of 1825 genes, which was significantly enriched with 
51% of the DEGs (fold enrichment = 3.76, adjusted P = 1.80 × 10−154; 
Fig. 2, C and D). Gene ontology (GO) analysis of both turquoise modules 
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Fig. 2. Effect of mTOR inhibition on plaque macrophage transcriptome. Transcriptome analysis was performed on CD68+ cells isolated from aortic roots of Apoe−/− 
mice after mTORi-NB (A, B, E, and G) or S6K1i-NB (C, D, F, and H) treatment, as compared to PBS (n = 8 to 10 mice per group). (A and C) Topological overlap matrix. Each 
row and column of the heatmap represent a single gene, with the color intensity indicating the network connection strength. The dendrograms on the upper and left 
sides show the hierarchical clustering tree of genes. (B and D) The 15 modules with the highest connectivity are ordered by size (outer ring). The inner ring shows DEGs 
within a module, as a percentage of total number of DEGs. (E and F) Volcano plot of genes within the turquoise module with the highest connectivity. Hub genes are 
identified based on P value and fold change. The up- and down-regulated hub genes are shown in red and blue, respectively. (G and H) MEGENA of the turquoise module. 
Up- and down-regulated genes are shown in red and blue, respectively. (I and J) Apoe−/− mice were fed a WD for 12 weeks, followed by 1 week of treatment, while kept 
on a WD. Treatment consisted of four intravenous injections of PBS, mTORi-NB [rapamycin (5 mg/kg)], S6K1i-NB [PF-4708671 (5 mg/kg)], or unloaded nanobiologics (NB; 
at a comparable dose). Aortic roots were harvested for histological analysis. (I) Representative images of prosaposin staining of the aortic root and (J) quantification of 
prosaposin-positive areas within the plaque (n = 6 to 10 mice per group). Experiments were performed once. Data are presented as means ± SD, and nonparametric 
Mann-Whitney U test was used in (J). *P < 0.05, ***P < 0.001, and ****P < 0.0001.
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showed the most pronounced enrichment of genes in cellular pro-
cesses [GO: 0009987] and metabolic processes (GO: 0008152).

Next, we identified intramodular hub genes in both the mTORi-NB 
and S6K1i-NB turquoise modules. For this purpose, we selected the 
top 10% genes of the turquoise module with the highest connectiv-
ity index. Of these highly connected genes, the ones with highest 
significance and fold change in expression (Fig. 2, E and F) were 
considered likely to be key regulators in the modules and may pro-
vide important biological insights (13). We identified four down-
regulated hub genes (Psap, Cox7c, Rsrp1, and Ctsb) and three 
up-regulated hub genes (Flna, Synpo, and Hspg2) (Fig. 2E and table 
S5) in the mTORi-NB turquoise module. In the S6K1i-NB turquoise 
module, we identified five down-regulated hub genes (Psap, Cox7c, 
Hnmpf, Rps27a, and Lyz1) and two up-regulated hub genes (Arhgdia 
and Rn45s) (Fig. 2F and table S6). Psap and Cox7c were consistently 
down-regulated by both mTOR and S6K1 inhibition. Psap encodes 
prosaposin, which is a proprotein for the saposins A to D and is 
essential in lysosomal glycosphingolipid degradation (14). Cox7c 
encodes the cytochrome c oxidase subunit 7C, which is a compo-
nent of the mitochondrial respiratory chain. Next, we performed a 
multiscale embedded gene coexpression network analysis (MEGENA) 
of the turquoise modules, as an additional method to identify bio-
logically meaningful hub genes. Although Cox7c was not identified 
by this analysis, Psap was confirmed as an important hub gene that 
was down-regulated in response to both mTOR and S6K1 inhibi-
tion (Fig. 2, G and H), making Psap the prime candidate for further 
analysis. So far, its role in atherosclerosis is unknown.

The decrease in Psap transcription that we observed in the tran-
scriptome analysis also translated into diminished protein expres-
sion of prosaposin. We performed histologic staining of prosaposin 
on cross sections of the aortic sinus area of Apoe−/− mice with 
advanced lesions. We observed widespread prosaposin expression 
in plaques (Fig. 2I), with a high degree of macrophage colocaliza-
tion (fig. S4). Prosaposin expression in plaques of mice that were 
treated with either mTORi-NB or S6K1i-NB was reduced by 57 
and 35%, respectively, as compared with unloaded nanobiologics 
(Fig. 2J).

Silencing Psap expression affects immunometabolism
Stimulation of monocytes with oxLDL up-regulates aerobic glycol-
ysis and oxidative phosphorylation (15). Because we found that the 
effects of mTOR inhibition were associated with Psap, we investi-
gated whether Psap expression affects cellular metabolism. For this 
purpose, we formulated lipid nanoparticles containing small inter-
fering RNA that targets Psap (Psap siRNA-LNPs), as previously 
described (16). The effect of Psap siRNA-LNPs on metabolic repro-
gramming was assessed in vitro in bone marrow–derived macrophages 
(BMDMs) by extracellular flux analysis. Changes in extracellular 
acidification rate (ECAR) in response to glucose and oligomycin 
(OM) injection were used to calculate glycolysis parameters. Changes 
in oxygen consumption rate (OCR) in response to OM, carbonyl 
cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), and rote-
none + antimycin A (AA) injection were used to calculate oxidative 
phosphorylation parameters. We found that silencing of Psap ex-
pression suppressed glycolysis (Fig. 3A) and oxidative phosphoryla-
tion parameters (Fig. 3B), when compared with control (media 
only) and control (Ctrl) siRNA-LNPs. These results mirror the 
effects of mTOR inhibition (rapamycin) and S6K1 inhibition 
(PF-4708671) on glycolysis (Fig. 3C) and oxidative phosphorylation 

(Fig. 3D). Together, these data indicate that Psap expression affects 
cell metabolism, which may explain the mechanism by which Psap 
regulates inflammatory activity of monocytes and macrophages.

Psap expression mediates inflammation in  
experimental atherosclerosis
To assess the role of Psap in atherosclerosis development and plaque 
inflammation, we transplanted bone marrow from Psap−/− mice 
into lethally irradiated Ldlr−/− mice. Apoe−/− mice are unsuitable for 
this purpose because transplantation of bone marrow producing 
apolipoprotein E would affect serum lipid content and prohibit the 
development of atherosclerosis (17). Mice that received Psap+/+ 
bone marrow cells served as controls (Fig. 4A). Mice were fed a WD 
for 11 weeks to develop atherosclerotic lesions. Serum cholesterol 
was equal in both groups (fig. S5A). We performed quantitative his-
tologic analysis of plaques in the aortic sinus area by serial cross 
sectioning at set distances from the aortic root. Cross sections were 
stained with hematoxylin and eosin (H&E; Fig. 4B). Lesion volume 
was calculated from the area under the curve (Fig. 4C). Mice receiv-
ing Psap−/− bone marrow showed a 22.8% (P < 0.0001) reduction in 
plaque volume as compared with mice transplanted with Psap+/+ 
bone marrow (Fig. 4D). There was no difference in the collagen con-
tent of the plaques as assessed by Sirius red staining (Fig. 4, E and F).

Subsequently, we focused on quantifying immune cells in 
atherosclerotic lesions by flow cytometry of whole aortas. Again, 
lethally irradiated Ldlr−/− mice received either Psap−/− or Psap+/+ 
bone marrow and were fed a WD for 11 weeks. Aortic plaques of 
mice receiving Psap−/− bone marrow contained 32.4% (P = 0.04) 
fewer CD11b+Lin− cells, primarily caused by a reduction in plaque 
macrophages, as well as 32.9% (P = 0.02) fewer neutrophils when 
compared with Psap+/+-transplanted animals (Fig. 4, G and H, and 
fig. S5B). The number of nonmyeloid cells (Lin+ cells) was unaffect-
ed (fig. S5B). These data indicate a reduction in plaque inflamma-
tion in mice that received Psap−/− bone marrow.

We investigated whether these changes in plaque size and my-
eloid cell content were the result of systemic immune effects. There 
was no difference in numbers of Lin−Sca1+c-kit− (LSK) cells or pro-
liferation rates of multipotent progenitors (fig. S5, C to E). Ly6Chi 
and Ly6Clo monocyte counts were increased in the bone marrow 
(Fig. 4I), whereas Ly6Clo monocytes were increased and Ly6Chi 
monocytes were unchanged in the blood and spleen (Fig. 4, J and K). 
Together, these results show that myelopoiesis in mice receiving 
Psap−/− bone marrow was not suppressed. The increase in Ly6Clo 
monocyte counts in the bone marrow, blood, and spleen of Psap−/− 
bone marrow–transplanted mice (Fig. 4, I to K) may contribute to a 
beneficial effect on plaque inflammation because these cells play a 
critical role in tissue homeostasis and repair (18). Concerning the 
neutrophils, we did not observe changes in the circulation, the 
spleen, and bone marrow, which could explain the lower neutrophil 
number in the plaques (fig. S5F).

Together, our data show that plaque inflammation and athero-
sclerosis development are reduced in Ldlr−/− mice receiving Psap−/− 
bone marrow. This underscores the data from our transcriptome 
analysis, supporting that Psap in myeloid cells plays a key role in 
atherosclerosis.

Prosaposin and inflammation in human atherosclerosis
Prosaposin is highly conserved during evolution and is found in all 
bony vertebrates (19). Because the function of prosaposin is similar 
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in mice and man, we were interested in the involvement of prosa-
posin in human atherosclerosis.

First, we investigated the role of prosaposin in oxLDL priming of 
human myeloid cells. We stimulated primary human monocytes 
in vitro with oxLDL or RPMI media (control) for 24 hours. Cells 
rested for 5 days, after which they were restimulated with lipopoly-
saccharide (LPS) or Pam3Cys (fig. S6A). OxLDL-primed cells 
displayed a higher cytokine response as compared with control cells 
(Fig. 5A and fig. S6B). When oxLDL stimulation was combined 
with mTORi-NB or S6K1i-NB treatment, priming was prevented 
(Fig. 5B and fig. S6B), indicating that mTOR-S6K1 signaling is re-
quired for oxLDL priming.

Subsequently, we performed single-cell RNA sequencing (RNA-seq) 
of nonprimed (RPMI) and oxLDL-primed adherent monocytes 
that were subsequently stimulated with LPS. We identified cells 
with low PSAP expression in the nonprimed monocytes, whereas 
PSAP expression was high in nearly all monocytes primed with 
oxLDL (Fig.  5C). We also observed that the prosaposin protein 
itself was capable of priming human primary monocytes, as evidenced 
by the enhanced cytokine production upon restimulation with LPS 
(Fig. 5D).

To investigate prosaposin’s involvement in human atherosclerosis, 
we obtained carotid plaque specimens from patients undergoing 
elective endarterectomy and stained them for prosaposin. We con-
firmed prosaposin’s presence in human plaques and its colocaliza-
tion with plaque macrophages (Fig. 5E and fig. S7A). We further 
explored this by transcriptome analysis using single-cell RNA-seq 

of 18 human plaques (20). Here, 14 distinct leukocyte populations 
were identified, among which we observed four different CD14+CD68+ 
macrophage subtypes (Fig. 5F). The highest PSAP expression was 
found in the macrophage populations, with relatively lower expres-
sion across the other leukocytes (Fig. 5F).

Given the strong relationship between mTOR signaling and 
Psap expression in mouse plaques, we set out to study this in human 
atherosclerosis. To this aim, we analyzed transcriptome data from 
620 carotid plaques (20). In these tissues, PSAP was highly expressed, 
as compared to the average expression of a random sample of other 
genes (fig. S7B). Among the 40 genes assigned to the mTOR signal-
ing pathway, we found PSAP to correlate with elements of the Ragu-
lator complex (LAMTOR1, LAMTOR2, and LAMTOR5), a component 
of active mTORC1 (Fig. 5G, figs. S7C and S8, and table S7). Further-
more, we found coexpression of PSAP and RPS6, which provides a 
link to S6K1 signaling, as S6K1 catalyzes the phosphorylation of 
ribosomal protein S6, encoded by RPS6.

Recently published single-cell transcriptional data from athero-
sclerotic plaques of mice and humans identified gene signatures of 
distinct macrophage populations (21, 22). We investigated the rela-
tionship of PSAP with gene expression related to these previously 
identified signatures. APOE, APOC1, CCL2, CTSB, CTSD, and MMP9 
displayed the highest coexpression with PSAP (Fig. 5H, fig. S9, and 
table S8). These genes were identified by Fernandez et al. (22) as 
markers of the same macrophage cluster in human atherosclerosis. 
APOE and APOC1 are related to cholesterol uptake and believed to 
be markers for foam cells. CCL2, CTSB, CTSD, and MMP9 are 
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Fig. 3. Psap affects immunometabolism. (A and B) Murine bone marrow–derived macrophages were incubated with Psap siRNA-LNPs or control (Ctrl) siRNA-LNPs and 
subjected to a metabolic assay (n = 10 wells per condition). Maximal glycolytic capacity (A) and maximal respiratory capacity (B) of murine bone marrow–derived macro-
phages. (C and D) Murine bone marrow–derived macrophages were incubated with mTOR or S6K1 inhibitors (both 20 M) and subjected to a metabolic assay (n = 6 wells 
per condition). Maximal glycolytic capacity (C) and maximal respiratory capacity (D). Experiments were performed once. Line graphs are presented as means ± SEM, bar 
graphs are presented as means ± SD, and nonparametric Mann-Whitney U tests were used. **P < 0.01 and ****P < 0.0001. Gluc, glucose; OM, oligomycin; FCCP, carbonyl 
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important inflammatory markers and involved in matrix degrada-
tion. CTSB, encoding for cathepsin B, was also recognized as one of 
the down-regulated hub genes in our murine plaque transcriptome 
analysis (Fig. 2C) and is the molecular target of FMT-CT imaging, 

which was reduced by mTORi-NB treatment. When we evaluated 
the expression of these six genes in our own single-cell transcrip-
tional data, CTSB and CTSD mostly resembled the cell-specific 
expression pattern of PSAP, further affirming their connectivity 
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Fig. 5. PSAP mediates atherosclerotic plaque inflammation in humans. (A to D) Human primary monocytes were incubated with oxLDL or prosaposin for 24 hours. 
Media only (RPMI) was used as control. After a 5-day rest, cells were restimulated with LPS. (A) Tumor necrosis factor– (TNF) production upon LPS stimulation, as mea-
sured by enzyme-linked immunosorbent assay (ELISA) (n = 6). (B) TNF production of human monocytes primed with oxLDL in combination with mTORi-NB or S6K1i-NB 
as compared to unloaded NB or oxLDL only (n = 6). (C) Single-cell transcriptome analysis of adherent human monocytes after oxLDL priming and LPS restimulation. Uni-
form Manifold Approximation and Projection (UMAP) plot shows the different monocyte clusters, and PSAP expression is shown for each cell (n = 3). (D) Human mono-
cytes were primed with prosaposin or RPMI (negative control) for 24 hours. After a 5-day rest, cells were restimulated with LPS, and TNF production was measured by 
ELISA (n = 5). (E) Representative images of CD68 (top) and prosaposin (middle and bottom) staining on a human carotid endarterectomy sample (n = 4; see also fig. S7). 
(F) Single-cell RNA-seq of human atherosclerotic plaques identifies 14 leukocyte subsets (n = 18). (G and H) Transcriptomic analyses were performed on human athero-
sclerotic plaques (n = 620). Heatmap depicting coexpression of PSAP and genes involved in (G) the mTOR signaling pathway or (H) atherosclerotic plaque macrophages, 
clustered on the basis of coexpression values. (I) Expression of six inflammatory genes, as compared to PSAP expression, based on single-cell RNA-seq, also presented in 
(F). Experiments were performed once. Bar graphs are presented as means ± SD, and Wilcoxon signed-rank test were used in (A), (B), and (D). *P < 0.05.
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(Fig. 5I). Collectively, these data demonstrate that the expression of 
PSAP is related to mTOR signaling and inflammation in human 
atherosclerotic lesions.

DISCUSSION
Atherosclerosis is a cholesterol-induced inflammatory disease in 
which monocytes and macrophages are the main protagonists. The 
mTOR signaling network is fundamental for balancing anabolic 
and catabolic pathways in response to the nutritional status in all 
eukaryotic cells and plays a dominant role in regulating inflamma-
tory activity in immune cells. In this study, we showed that myeloid 
cell–specific mTOR and S6K1 inhibition rapidly suppressed plaque 
inflammation in atherosclerotic mice. We identified prosaposin as a 
mediator of these anti-inflammatory effects and revealed prosaposin’s 
regulatory role in immunometabolism. In humans, we confirmed 
high PSAP expression in plaque macrophages and found it to be 
related to mTOR signaling and inflammation.

Prosaposin is the precursor of four similar proteins named sa-
posin A, B, C, and D (23, 24), and this protein is highly conserved in 
evolution (19). Saposins are essential for lysosomal degradation of 
glycosphingolipids by facilitating the access of the degrading en-
zymes to their substrates (25). Deleterious genetic mutations in any 
of the saposin domains lead to lysosomal storage disease (26). 
Besides the intracellular function of prosaposin in lysosomes, the 
protein is also excreted and can be detected in various body fluids 
including serum (27). Concerning hematopoietic cells, prosaposin 
is predominantly expressed in monocytes and macrophages, and 
much lower expression is found in lymphocytes (28). Prosaposin 
and the individual saposins are known to have specific immunological 
functions in innate immune cells (14). Saposins are indispensable 
for lipid antigen presentation to CD1-restricted T cells, as they mo-
bilize lipids from lysosomal membranes to facilitate their associa-
tion with CD1d (14). CD1 lipid antigen presentation is of relevance 
in infectious diseases such as Mycobacterium tuberculosis (29). CD1 
is also important in atherosclerosis, exemplified by the fact that 
CD1d−/−Apoe−/− mice, which are incapable of lipid antigen presenta-
tion, showed markedly reduced atherosclerosis development (30, 31). 
Furthermore, prosaposin is related to progranulin, with which it 
interacts to facilitate its lysosomal targeting (32). Progranulin is of 
importance in the innate immune response and was previously 
found to be highly expressed in atherosclerotic plaque macrophages 
(33–35).

In our current study, we revealed prosaposin to be an important 
mediator of the anti-inflammatory effect of mTOR and S6K1 inhi-
bition in plaque macrophages. This may be mediated, in part, 
through abovementioned effects on CD1 lipid antigen presentation 
and/or progranulin. Another mechanism may be prosaposin’s cen-
tral role in sphingolipid metabolism (14). Sphingolipids are universal 
building blocks of cell membranes and include ceramide, sphingomyelin, 
and many different forms of glycosphingolipids (36). Sphingolipid 
metabolites, particularly ceramide and sphingosine 1-phosphate (S1P), 
modulate a wide variety of cellular processes involved in inflamma-
tion, cell cycle, and metabolism (36–38). Ceramides affect cellular 
metabolism by inhibiting uptake of amino acids (39, 40) and glu-
cose (41), leading to utilization of fatty acids for energy production 
(38). Besides this, ceramides influence mitochondrial activity by 
changing the mitochondrial membrane potential (42), which is 
required for efficient adenosine triphosphate production through 

oxidative phosphorylation. Furthermore, the respiratory chain 
activity can be modified by ceramides (43, 44).

The precise role of PSAP in human atherosclerosis has not been 
studied previously. The rapid progress of single-cell technologies, 
such as single-cell RNA-seq and CyTOF (cytometry by time of 
flight), aids in unraveling cellular subsets, phenotypes, and also the 
underlying cellular processes of a complex disease such as athero-
sclerosis. Recently, Fernandez et  al. (22) defined human plaque 
macrophage clusters based on their gene expression signatures. 
PSAP appeared in one of the clusters in their data, which corrobo-
rates our data from both mice and human atherosclerosis. Similar 
to the observation made by Fernandez et al. (22), we showed that 
PSAP is coexpressed with other genes known to play an important 
role in plaque inflammation, namely APOE, APOC1, CCL2, CTSB, 
CTSD, and MMP9.

In this study, we revealed the role of prosaposin in atherosclero-
sis in both mice and humans. This suggests it may be possible to 
target prosaposin or the individual saposin domains for the treat-
ment of atherosclerosis. RNA interference with siRNA could be a 
way to achieve this, as we showed in our current study. siRNA ther-
apy is highly specific to its target. Yet, the off-target effects on PSAP 
suppression in other tissues could be a limitation. This may be over-
come by targeting the therapy specifically to myeloid cells (45) using 
nanotherapeutic siRNA delivery (46). Another form of PSAP-targeted 
treatment could be the application of small molecules binding to 
prosaposin or the saposin domains. To our knowledge, no specific 
small-molecule inhibitor has been developed for this purpose. 
However, from literature, we found that the antimalarial drug hy-
droxychloroquine binds to saposin B (47). Hydroxychloroquine is 
an immunomodulating drug used to treat rheumatoid arthritis and 
systemic lupus erythematosus (SLE), and recent studies showed an-
tiatherosclerotic effects in patients with SLE (48, 49). Another 
potential strategy may be to interfere with sphingolipid signaling. 
S1P receptor 1 modulators and agonists are currently approved for 
the treatment of multiple sclerosis, an autoimmune disease of the 
central nervous system in which macrophages play a central role 
(50). S1P receptor 1 modulators and agonists were also observed to 
reduce atherosclerosis in experimental studies by modulating mac-
rophage function (51, 52).

Collectively, our findings advance several concepts. First, we 
show that mTOR and S6K1 inhibition in myeloid cells rapidly re-
duces plaque inflammation. Second, we found prosaposin to be an 
important mediator of these anti-inflammatory effects, which likely 
relates to prosaposin’s effect on cell metabolism. Third, we show 
that prosaposin is associated with plaque inflammation in human 
atherosclerosis. Our data identify prosaposin and the individual sa-
posin domains as potential therapeutic targets for the treatment of 
atherosclerosis.

MATERIALS AND METHODS
Study design
We designed and formulated two myeloid cell–specific nanobiologics 
to selectively inhibit mTOR signaling. We treated Apoe−/− mice 
with these nanobiologics for 1 week and used flow cytometry and 
histology to study the systemic immune status and plaque inflam-
mation (n  =  20 mice per group). By investigating transcriptome 
modifications, we identified Psap, a gene encoding for prosaposin, 
to be closely related with mTOR signaling (n = 10 mice per group). 
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Subsequently, Psap siRNA-LNPs were designed and formulated to 
study the influence of Psap on immune cell metabolism. Here, we 
used murine BMDMs and a metabolic flux assay (n = 10 wells per 
condition). To study the direct effects of Psap on atherosclerotic 
inflammation, we transplanted Psap−/− or Psap+/+ bone marrow in 
lethally irradiated Ldlr−/− mice and again studied the systemic 
immune status and plaque inflammation (n = 20 mice per group). 
Last, we corroborated our findings in human monocytes through 
in vitro assays (n = 6 donors) and single-cell RNA-seq (n = 3 
donors) and in human atherosclerotic plaque specimens through 
histology (n = 4 patients), single-cell RNA-seq (n = 18 patients), and 
bulk RNA-seq (n = 620 patients).

Mice
Female Apoe−/− mice (B6.129P2-Apoetm1Unc/J), female Ldlr−/− 
mice (B6.129S7-Ldlrtm1Her/J), and male and female Psap+/− mice 
(B6.129P2-Psaptm1Suz/J) were purchased from the Jackson laboratory. 
Eight-week-old Apoe−/− mice were fed a WD (0.2% weight choles-
terol; 15.2% kcal protein, 42.7% kcal carbohydrate, and 42.0% kcal 
fat; Harlan TD. 88137) for 12 weeks. Male and female Psap+/− mice 
were bred to obtain Psap−/− and Psap+/+ mice. After bone marrow 
transplantation and reconstitution, Ldlr−/− mice were fed a WD for 
11 weeks. Animal care and procedures were based on an approved 
institutional protocol from the Icahn School of Medicine at 
Mount Sinai.

In vitro experiments were performed on murine BMDMs. BMDMs 
were cultured in cell culture dishes, in RPMI supplemented with 
10% fetal bovine serum, 2 mM l-glutamine, penicillin-streptomycin 
(100 U/ml), and 15% L929 cell-conditioned medium. All cells were 
incubated at 37°C in a 5% CO2 atmosphere.

Human subjects
For in vitro studies on human monocytes, buffy coats from healthy 
donors were obtained after written informed consent (Sanquin 
blood bank, Nijmegen, The Netherlands). For histologic analysis, 
human atherosclerotic plaque samples were obtained from four pa-
tients. All four patients had an indication for carotid endarterectomy. 
Gender of the included subjects for both studies is known, although 
gender association cannot be analyzed because of small group sizes. 
Subject allocation to groups is not applicable.

For bulk RNA-seq and single-cell RNA-seq analysis of human 
carotid atherosclerotic plaques from the Athero-Express Biobank 
Study, research was executed according to the principles of the 
Declaration of Helsinki and its later amendments (53). All patients 
provided informed consent, and the study was approved by the medical 
ethics committee of the University Medical Center (UMC) Utrecht.

Synthesis of nanobiologics
Nanobiologic formulations were synthesized according to previ-
ously published methods (54, 55). For mTORi-NB, the mTORC1-
complex inhibitor rapamycin (3 mg, 3.3 mol), was combined with 
1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) (6 mg, 
12.8 mol) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) 
(18 mg, 26.6 mol) (Avanti Polar Lipids). For S6K1i-NB, the S6K1 
inhibitor PF-4708671 (1.5 mg, 4.6 mol) was combined with 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) (18 mg, 23.7 mol) 
and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (PHPC) 
(6 mg, 12.1 mol). The inhibitors and lipids were dissolved in meth-
anol and chloroform, mixed, and then dried in a vacuum, yielding a 

thin lipid film. A PBS solution containing human APOA1 (4.8 mg 
in 5 ml of PBS) was added to the lipid film. The mixture was incu-
bated in an ice-cold sonication bath for 15 to 30 min. Subsequently, 
the solution was sonicated using a tip sonicator at 0°C for 20 min to 
form APOA1-based nanobiologics. The obtained solution was con-
centrated by centrifugal filtration using a 100,000 MWCO Vivaspin tube 
at 3000 rpm to obtain a volume of ~1 ml and then washed twice with 
fresh PBS (5 ml). The concentrated solution (~1 ml) was filtered through 
a 0.22-m PES syringe filter to obtain the final nanobiologic solution. 
For targeting and biodistribution experiments, analogs of mTORi-NB 
and S6K1i-NB were prepared by incorporating the fluorescent dyes 
DiIC18(7) (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine 
iodide) or DiOC18(3) (3,3′-dioctadecyloxacarbocyanine perchlorate) 
(Invitrogen).

Nanobiologic treatment
Twenty-week-old Apoe−/− received either PBS, unloaded nanobio-
logics, mTORi-NB [mTORi (5 mg/kg)], or S6K1i-NB [S6K1i (5 mg/kg)] 
through lateral tail vein injections. Mice were treated every other 
day for 1 week (total of four injections) while being kept on a 
WD. For the targeting and biodistribution experiments, mice re-
ceived a single intravenous injection. All animals were euthanized 
24 hours after the last injection.

Histology and immunohistochemistry
For Mac3, CD68, and prosaposin staining, tissues were fixed in for-
malin, embedded in paraffin, and sectioned into 4-m slices. To 
perform immunohistochemical staining, mouse aortic roots and 
human carotid endarterectomy (CEA) sections were deparaffinized, 
blocked using 4% fetal calf serum (Gibco) in PBS for 30 min, and 
incubated in antigen-retrieval solution (Dako) at 95°C for 10 min. 
Mouse aortic root sections were immunolabeled with rat anti-mouse 
Mac3 monoclonal antibody (1:30; BD Biosciences, 553322). CEA 
samples were stained for macrophages using a mouse anti-human 
CD68 primary antibody (1:300; Abcam, Ab201340) in combination 
with a biotinylated donkey anti-mouse secondary antibody (1:300; 
Jackson ImmunoResearch, 715-065-150). Both mouse aortic roots 
and CEA samples were stained for prosaposin using a rabbit anti-
human prosaposin primary antibody (1:500; Abcam, Ab180751) in 
combination with a biotinylated goat anti-rabbit secondary anti-
body (1:300; Dako, E0432). Antibody staining was visualized by 
either Immpact AMEC Red (Vector Labs) or diaminobenzidine 
(DAB). Sections were analyzed using a Leica DM6000 microscope 
(Leica Microsystems) or the VENTANA iScan HT slide scanner 
(Ventana).

Aortic root samples from Ldlr−/− mice were harvested, embed-
ded in Tissue-Tek O.C.T., and sectioned into 7-m slices. To ac-
quire lesion volume, sections were collected starting at the beginning 
of the artic root until the aortic valves were no longer visible. After 
staining with H&E, the lesion area was measured in intervals of 
84 m using Adobe Photoshop. The generated lesion area was plotted 
against the distance from the artic root after which the lesion vol-
ume was obtained by calculating the area under the curve. Sirius red 
staining was used for the analysis of collagen content.

RNA-seq of murine plaque macrophages
The CD68+ cells collected by laser capture microdissection were 
used for RNA isolation (PicoPure RNA Isolation Kit, Arcturus) and 
subsequent RNA amplification and complementary DNA preparation 
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according to the manufacturer’s protocols (Ovation Pico WTA System, 
NuGEN). The quality and concentration of the collected samples 
were measured using an Agilent 2100 Bioanalyzer. For RNA-seq, 
pair-end libraries were prepared and validated. The purity, frag-
ment size, yield, and concentration were determined. During cluster 
generation, the library molecules were hybridized onto an Illumina 
flow cell. Subsequently, the hybridized molecules were amplified using 
bridge amplification, resulting in a heterogeneous population of clus-
ters. The dataset was obtained using an Illumina HiSeq 2500 sequencer.

Bone marrow transplantation
Nine-week-old Ldlr−/− mice were lethally irradiated (2× 600 cGy). 
Subsequently, bone marrow cells were harvested from 3-week-old 
Psap−/− and Psap+/+ mice and transplanted in Ldlr−/− recipients (5 × 
106 cells per recipient). Mice were kept on polymyxin B sulfate and 
neomycin, administered through drinking water at 600 U/ml and 
0.1 mg/ml, respectively, for 6 weeks.

Athero-express human sample collection
The procedure of obtaining biomaterial of patients selected for end-
arterectomy within the Athero-Express Biobank Study has been 
described before (56). In short, arterial plaque material is obtained 
during endarterectomy. Each plaque is dissected into segments of 
0.5 cm. From these, the culprit lesion is reserved for histological 
assessment. Surrounding segments are either frozen in liquid nitrogen 
without delay and stored at −80°C for later use (bulk RNA-seq) or 
used immediately (single-cell RNA-seq).

Single-cell RNA-seq analysis Athero-Express samples
Before processing, reads were filtered for mitochondrial and ribo-
somal genes, MALAT1, KCNQ1OT1, UGDH-AS1, and EEF1A. Then, 
remaining single-cell sequencing data were processed as described 
previously (57) in an R 3.5 environment using Seurat (version 2.3.4) 
(58). Cells expressing between 500 and 10,000 genes and genes ex-
pressed in at least three cells were used for further analysis. Data 
were log normalized and scaled with the exclusion of unique molec-
ular identifiers. Canonical correlation analysis reduction was per-
formed, resolution set to 1.2 for 15 dimensions, to identify clusters 
and to perform t-distributed stochastic neighbor embedding (tSNE). 
Cell clusters were annotated by evaluating differential gene expres-
sion of individual cell clusters (Wilcoxon rank sum test) and ana-
lyzing against BLUEPRINT (59) reference data using SingleR (60).

Statistical analysis
Data are shown as means ± SD, unless otherwise stated. For plaque 
volume analysis, either an unpaired t test or a one-way analysis of 
variance (ANOVA) with Dunnett’s correction was applied depending 
on the number of groups. For in vitro human monocyte experiments, 
normality checks were performed using gg-plots and a normality 
assay. Nonparametric parameters were analyzed pairwise using a 
Wilcoxon signed-rank test. Correlations between genes in human 
bulk RNA-seq were calculated by Spearman coefficients. Signifi-
cance of differences in all other experiments was calculated using 
nonparametric Mann-Whitney U tests. Two-sided testing was used, 
and a P value below 0.05 was considered statistically significant. For 
mouse transcriptome analyses, false discovery rate control was ap-
plied and adjusted P values were reported. All data were analyzed 
using GraphPad Prism version 8.4.3. Individual subject level data 
are reported in data file S1.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/584/eabe1433/DC1
Materials and Methods
Fig. S1. Characteristics of mTORi-NB and S6K1i-NB.
Fig. S2. Myeloid cell–specific mTOR inhibition reduces atherosclerotic plaque inflammation.
Fig. S3. Systemic effects of mTORi-NB and S6K1i-NB treatment.
Fig. S4. Prosaposin colocalizes with macrophages in murine plaques.
Fig. S5. Psap mediates atherosclerotic plaque inflammation in Ldlr−/− mice.
Fig. S6. Nanobiologics inhibit oxLDL priming in human monocytes.
Fig. S7. PSAP mediates atherosclerotic plaque inflammation in humans.
Fig. S8. Correlation between PSAP expression and genes involved in mTOR signaling.
Fig. S9. Correlation between PSAP expression and genes involved in macrophage 
inflammation.
Table S1. Expression of genes coding for chemokines after mTORi-NB treatment.
Table S2. Expression of genes coding for chemokines after S6K1i-NB treatment.
Table S3. Expression of autophagy-related genes after mTORi-NB treatment.
Table S4. Expression of autophagy-related genes after S6K1i-NB treatment.
Table S5. Hub genes of the mTORi-NB–related turquoise module.
Table S6. Hub genes of the S6K1i-NB–related turquoise module.
Table S7. Correlation between PSAP expression and genes involved in mTOR signaling.
Table S8. Correlation between PSAP expression and genes involved in macrophage 
inflammation.
Data file S1. Individual subject-level data.
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signaling and altering macrophage metabolism for atherosclerosis.
contained prosaposin-expressing macrophages, demonstrating the translational potential of targeting mTOR
down-regulated prosaposin, a gene involved in macrophage metabolism. Plaque samples from patients also 
atherosclerosis, nanobiologics inhibiting mTOR or one of its target proteins reduced plaque inflammation and
mechanistic target of rapamycin (mTOR) in macrophage metabolism in atherosclerosis. In mouse models of 
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